Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2322563121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557192

RESUMO

Mammalian switch/sucrose nonfermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, an orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 (ATP binding cassette subfamily B member 1) overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.


Assuntos
Adenosina Trifosfatases , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Ratos , Camundongos , Animais , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Linhagem Celular , Cromatina , Mamíferos/genética , Antagonistas de Receptores de Andrógenos , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
2.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562800

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) subsists in a nutrient-deregulated microenvironment, making it particularly susceptible to treatments that interfere with cancer metabolism12. For example, PDAC utilizes and is dependent on high levels of autophagy and other lysosomal processes3-5. Although targeting these pathways has shown potential in preclinical studies, progress has been hampered by the challenge of identifying and characterizing favorable targets for drug development6. Here, we characterize PIKfyve, a lipid kinase integral to lysosomal functioning7, as a novel and targetable vulnerability in PDAC. In human patient and murine PDAC samples, we discovered that PIKFYVE is overexpressed in PDAC cells compared to adjacent normal cells. Employing a genetically engineered mouse model, we established the essential role of PIKfyve in PDAC progression. Further, through comprehensive metabolic analyses, we found that PIKfyve inhibition obligated PDAC to upregulate de novo lipid synthesis, a relationship previously undescribed. PIKfyve inhibition triggered a distinct lipogenic gene expression and metabolic program, creating a dependency on de novo lipid metabolism pathways, by upregulating genes such as FASN and ACACA. In PDAC, the KRAS-MAPK signaling pathway is a primary driver of de novo lipid synthesis, specifically enhancing FASN and ACACA levels. Accordingly, the simultaneous targeting of PIKfyve and KRAS-MAPK resulted in the elimination of tumor burden in a syngeneic orthotopic model and tumor regression in a xenograft model of PDAC. Taken together, these studies suggest that disrupting lipid metabolism through PIKfyve inhibition induces synthetic lethality in conjunction with KRAS-MAPK-directed therapies for PDAC.

4.
JAMA Oncol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635241

RESUMO

Importance: Benefits of prostate cancer (PCa) screening with prostate-specific antigen (PSA) alone are largely offset by excess negative biopsies and overdetection of indolent cancers resulting from the poor specificity of PSA for high-grade PCa (ie, grade group [GG] 2 or greater). Objective: To develop a multiplex urinary panel for high-grade PCa and validate its external performance relative to current guideline-endorsed biomarkers. Design, Setting, and Participants: RNA sequencing analysis of 58 724 genes identified 54 markers of PCa, including 17 markers uniquely overexpressed by high-grade cancers. Gene expression and clinical factors were modeled in a new urinary test for high-grade PCa (MyProstateScore 2.0 [MPS2]). Optimal models were developed in parallel without prostate volume (MPS2) and with prostate volume (MPS2+). The locked models underwent blinded external validation in a prospective National Cancer Institute trial cohort. Data were collected from January 2008 to December 2020, and data were analyzed from November 2022 to November 2023. Exposure: Protocolized blood and urine collection and transrectal ultrasound-guided systematic prostate biopsy. Main Outcomes and Measures: Multiple biomarker tests were assessed in the validation cohort, including serum PSA alone, the Prostate Cancer Prevention Trial risk calculator, and the Prostate Health Index (PHI) as well as derived multiplex 2-gene and 3-gene models, the original 2-gene MPS test, and the 18-gene MPS2 models. Under a testing approach with 95% sensitivity for PCa of GG 2 or greater, measures of diagnostic accuracy and clinical consequences of testing were calculated. Cancers of GG 3 or greater were assessed secondarily. Results: Of 761 men included in the development cohort, the median (IQR) age was 63 (58-68) years, and the median (IQR) PSA level was 5.6 (4.6-7.2) ng/mL; of 743 men included in the validation cohort, the median (IQR) age was 62 (57-68) years, and the median (IQR) PSA level was 5.6 (4.1-8.0) ng/mL. In the validation cohort, 151 (20.3%) had high-grade PCa on biopsy. Area under the receiver operating characteristic curve values were 0.60 using PSA alone, 0.66 using the risk calculator, 0.77 using PHI, 0.76 using the derived multiplex 2-gene model, 0.72 using the derived multiplex 3-gene model, and 0.74 using the original MPS model compared with 0.81 using the MPS2 model and 0.82 using the MPS2+ model. At 95% sensitivity, the MPS2 model would have reduced unnecessary biopsies performed in the initial biopsy population (range for other tests, 15% to 30%; range for MPS2, 35% to 42%) and repeat biopsy population (range for other tests, 9% to 21%; range for MPS2, 46% to 51%). Across pertinent subgroups, the MPS2 models had negative predictive values of 95% to 99% for cancers of GG 2 or greater and of 99% for cancers of GG 3 or greater. Conclusions and Relevance: In this study, a new 18-gene PCa test had higher diagnostic accuracy for high-grade PCa relative to existing biomarker tests. Clinically, use of this test would have meaningfully reduced unnecessary biopsies performed while maintaining highly sensitive detection of high-grade cancers. These data support use of this new PCa biomarker test in patients with elevated PSA levels to reduce the potential harms of PCa screening while preserving its long-term benefits.

5.
bioRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562774

RESUMO

Biallelic loss of cyclin-dependent kinase 12 (CDK12) defines a unique molecular subtype of metastatic castration-resistant prostate cancer (mCRPC). It remains unclear, however, whether CDK12 loss per se is sufficient to drive prostate cancer development-either alone, or in the context of other genetic alterations-and whether CDK12-mutant tumors exhibit sensitivity to specific pharmacotherapies. Here, we demonstrate that tissue-specific Cdk12 ablation is sufficient to induce preneoplastic lesions and robust T cell infiltration in the mouse prostate. Allograft-based CRISPR screening demonstrated that Cdk12 loss is positively associated with Trp53 inactivation but negatively associated with Pten inactivation-akin to what is observed in human mCRPC. Consistent with this, ablation of Cdk12 in prostate organoids with concurrent Trp53 loss promotes their proliferation and ability to form tumors in mice, while Cdk12 knockout in the Pten-null prostate cancer mouse model abrogates tumor growth. Bigenic Cdk12 and Trp53 loss allografts represent a new syngeneic model for the study of androgen receptor (AR)-positive, luminal prostate cancer. Notably, Cdk12/Trp53 loss prostate tumors are sensitive to immune checkpoint blockade. Cdk12-null organoids (either with or without Trp53 co-ablation) and patient-derived xenografts from tumors with CDK12 inactivation are highly sensitive to inhibition or degradation of its paralog kinase, CDK13. Together, these data identify CDK12 as a bona fide tumor suppressor gene with impact on tumor progression and lends support to paralog-based synthetic lethality as a promising strategy for treating CDK12-mutant mCRPC.

6.
bioRxiv ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38464081

RESUMO

Mammalian switch/sucrose non-fermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, a first-in-class, orally bioavailable proteolysis targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 (BRD4) and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.

7.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38464251

RESUMO

The androgen receptor (AR) is a ligand-responsive transcription factor that binds at enhancers to drive terminal differentiation of the prostatic luminal epithelia. By contrast, in tumors originating from these cells, AR chromatin occupancy is extensively reprogrammed to drive hyper-proliferative, metastatic, or therapy-resistant phenotypes, the molecular mechanisms of which remain poorly understood. Here, we show that the tumor-specific enhancer circuitry of AR is critically reliant on the activity of Nuclear Receptor Binding SET Domain Protein 2 (NSD2), a histone 3 lysine 36 di-methyltransferase. NSD2 expression is abnormally gained in prostate cancer cells and its functional inhibition impairs AR trans-activation potential through partial off-loading from over 40,000 genomic sites, which is greater than 65% of the AR tumor cistrome. The NSD2-dependent AR sites distinctly harbor a chimeric AR-half motif juxtaposed to a FOXA1 element. Similar chimeric motifs of AR are absent at the NSD2-independent AR enhancers and instead contain the canonical palindromic motifs. Meta-analyses of AR cistromes from patient tumors uncovered chimeric AR motifs to exclusively participate in tumor-specific enhancer circuitries, with a minimal role in the physiological activity of AR. Accordingly, NSD2 inactivation attenuated hallmark cancer phenotypes that were fully reinstated upon exogenous NSD2 re-expression. Inactivation of NSD2 also engendered increased dependency on its paralog NSD1, which independently maintained AR and MYC hyper-transcriptional programs in cancer cells. Concordantly, a dual NSD1/2 PROTAC degrader, called LLC0150, was preferentially cytotoxic in AR-dependent prostate cancer as well as NSD2-altered hematologic malignancies. Altogether, we identify NSD2 as a novel subunit of the AR neo-enhanceosome that wires prostate cancer gene expression programs, positioning NSD1/2 as viable paralog co-targets in advanced prostate cancer.

9.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328238

RESUMO

The POU2F3-POU2AF2/3 (OCA-T1/2) transcription factor complex is the master regulator of the tuft cell lineage and tuft cell-like small cell lung cancer (SCLC). Here, we found that the POU2F3 molecular subtype of SCLC (SCLC-P) exhibits an exquisite dependence on the activity of the mammalian switch/sucrose non-fermentable (mSWI/SNF) chromatin remodeling complex. SCLC-P cell lines were sensitive to nanomolar levels of a mSWI/SNF ATPase proteolysis targeting chimera (PROTAC) degrader when compared to other molecular subtypes of SCLC. POU2F3 and its cofactors were found to interact with components of the mSWI/SNF complex. The POU2F3 transcription factor complex was evicted from chromatin upon mSWI/SNF ATPase degradation, leading to attenuation of downstream oncogenic signaling in SCLC-P cells. A novel, orally bioavailable mSWI/SNF ATPase PROTAC degrader, AU-24118, demonstrated preferential efficacy in the SCLC-P relative to the SCLC-A subtype and significantly decreased tumor growth in preclinical models. AU-24118 did not alter normal tuft cell numbers in lung or colon, nor did it exhibit toxicity in mice. B cell malignancies which displayed a dependency on the POU2F1/2 cofactor, POU2AF1 (OCA-B), were also remarkably sensitive to mSWI/SNF ATPase degradation. Mechanistically, mSWI/SNF ATPase degrader treatment in multiple myeloma cells compacted chromatin, dislodged POU2AF1 and IRF4, and decreased IRF4 signaling. In a POU2AF1-dependent, disseminated murine model of multiple myeloma, AU-24118 enhanced survival compared to pomalidomide, an approved treatment for multiple myeloma. Taken together, our studies suggest that POU2F-POU2AF-driven malignancies have an intrinsic dependence on the mSWI/SNF complex, representing a therapeutic vulnerability.

10.
Proc Natl Acad Sci U S A ; 120(18): e2221175120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094128

RESUMO

Diffuse midline gliomas (DMGs) including diffuse intrinsic pontine gliomas (DIPGs) bearing lysine-to-methionine mutations in histone H3 at lysine 27 (H3K27M) are lethal childhood brain cancers. These tumors harbor a global reduction in the transcriptional repressive mark H3K27me3 accompanied by an increase in the transcriptional activation mark H3K27ac. We postulated that H3K27M mutations, in addition to altering H3K27 modifications, reprogram the master chromatin remodeling switch/sucrose nonfermentable (SWI/SNF) complex. The SWI/SNF complex can exist in two main forms termed BAF and PBAF that play central roles in neurodevelopment and cancer. Moreover, BAF antagonizes PRC2, the main enzyme catalyzing H3K27me3. We demonstrate that H3K27M gliomas show increased protein levels of the SWI/SNF complex ATPase subunits SMARCA4 and SMARCA2, and the PBAF component PBRM1. Additionally, knockdown of mutant H3K27M lowered SMARCA4 protein levels. The proteolysis targeting chimera (PROTAC) AU-15330 that simultaneously targets SMARCA4, SMARCA2, and PBRM1 for degradation exhibits cytotoxicity in H3.3K27M but not H3 wild-type cells. AU-15330 lowered chromatin accessibility measured by ATAC-Seq at nonpromoter regions and reduced global H3K27ac levels. Integrated analysis of gene expression, proteomics, and chromatin accessibility in AU-15330-treated cells demonstrated reduction in the levels of FOXO1, a key member of the forkhead family of transcription factors. Moreover, genetic or pharmacologic targeting of FOXO1 resulted in cell death in H3K27M cells. Overall, our results suggest that H3K27M up-regulates SMARCA4 levels and combined targeting of SWI/SNF ATPases in H3.3K27M can serve as a potent therapeutic strategy for these deadly childhood brain tumors.


Assuntos
Neoplasias Encefálicas , Glioma Pontino Intrínseco Difuso , Glioma , Humanos , Criança , Histonas/genética , Adenosina Trifosfatases/metabolismo , Lisina/genética , Cromatina , Glioma/genética , Neoplasias Encefálicas/genética , Mutação , DNA Helicases/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo
11.
PLoS One ; 18(2): e0281281, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36735698

RESUMO

Although the COVID-19 pandemic began over three years ago, the virus responsible for the disease, SARS-CoV-2, continues to infect people across the globe. As such, there remains a critical need for development of novel therapeutics against SARS-CoV-2. One technology that has remained relatively unexplored in COVID-19 is the use of antisense oligonucleotides (ASOs)-short single-stranded nucleic acids that bind to target RNA transcripts to modulate their expression. In this study, ASOs targeted against the SARS-CoV-2 genome and host entry factors, ACE2 and TMPRSS2, were designed and tested for their ability to inhibit cellular infection by SARS-CoV-2. Using our previously developed SARS-CoV-2 bioassay platform, we screened 180 total ASOs targeting various regions of the SARS-CoV-2 genome and validated several ASOs that potently blocked SARS-CoV-2 infection in vitro. Notably, select ASOs retained activity against both the WA1 and B.1.1.7 (commonly known as alpha) variants. Screening of ACE2 and TMPRSS2 ASOs showed that targeting of ACE2 also potently prevented infection by the WA1 and B.1.1.7 SARS-CoV-2 viruses in the tested cell lines. Combined with the demonstrated success of ASOs in other disease indications, these results support further research into the development of ASOs targeting SARS-CoV-2 and host entry factors as potential COVID-19 therapeutics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Pandemias , Peptidil Dipeptidase A/metabolismo , Internalização do Vírus
12.
Cell Death Dis ; 13(4): 331, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35411000

RESUMO

As the first rate-limiting enzyme in fatty acid oxidation (FAO), CPT1 plays a significant role in metabolic adaptation in cancer pathogenesis. FAO provides an alternative energy supply for cancer cells and is required for cancer cell survival. Given the high proliferation rate of cancer cells, nucleotide synthesis gains prominence in rapidly proliferating cells. In the present study, we found that CPT1A is a determining factor for the abnormal activation of FAO in nasopharyngeal carcinoma (NPC) cells. CPT1A is highly expressed in NPC cells and biopsies. CPT1A dramatically affects the malignant phenotypes in NPC, including proliferation, anchorage-independent growth, and tumor formation ability in nude mice. Moreover, an increased level of CPT1A promotes core metabolic pathways to generate ATP, inducing equivalents and the main precursors for nucleotide biosynthesis. Knockdown of CPT1A markedly lowers the fraction of 13C-palmitate-derived carbons into pyrimidine. Periodic activation of CPT1A increases the content of nucleoside metabolic intermediates promoting cell cycle progression in NPC cells. Targeting CPT1A-mediated FAO hinders the cell cycle G1/S transition. Our work verified that CPT1A links FAO to cell cycle progression in NPC cellular proliferation, which supplements additional experimental evidence for developing a therapeutic mechanism based on manipulating lipid metabolism.


Assuntos
Carnitina O-Palmitoiltransferase , Neoplasias Nasofaríngeas , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Proliferação de Células , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Camundongos , Camundongos Nus , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Nucleosídeos/metabolismo , Nucleotídeos/metabolismo , Oxirredução
13.
Nature ; 601(7893): 434-439, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937944

RESUMO

The switch/sucrose non-fermentable (SWI/SNF) complex has a crucial role in chromatin remodelling1 and is altered in over 20% of cancers2,3. Here we developed a proteolysis-targeting chimera (PROTAC) degrader of the SWI/SNF ATPase subunits, SMARCA2 and SMARCA4, called AU-15330. Androgen receptor (AR)+ forkhead box A1 (FOXA1)+ prostate cancer cells are exquisitely sensitive to dual SMARCA2 and SMARCA4 degradation relative to normal and other cancer cell lines. SWI/SNF ATPase degradation rapidly compacts cis-regulatory elements bound by transcription factors that drive prostate cancer cell proliferation, namely AR, FOXA1, ERG and MYC, which dislodges them from chromatin, disables their core enhancer circuitry, and abolishes the downstream oncogenic gene programs. SWI/SNF ATPase degradation also disrupts super-enhancer and promoter looping interactions that wire supra-physiologic expression of the AR, FOXA1 and MYC oncogenes themselves. AU-15330 induces potent inhibition of tumour growth in xenograft models of prostate cancer and synergizes with the AR antagonist enzalutamide, even inducing disease remission in castration-resistant prostate cancer (CRPC) models without toxicity. Thus, impeding SWI/SNF-mediated enhancer accessibility represents a promising therapeutic approach for enhancer-addicted cancers.


Assuntos
Adenosina Trifosfatases , DNA Helicases , Proteínas Nucleares , Neoplasias da Próstata , Fatores de Transcrição , Adenosina Trifosfatases/metabolismo , Animais , Benzamidas , DNA Helicases/genética , Elementos Facilitadores Genéticos , Genes myc , Fator 3-alfa Nuclear de Hepatócito , Humanos , Masculino , Nitrilas , Proteínas Nucleares/genética , Oncogenes , Feniltioidantoína , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Receptores Androgênicos , Fatores de Transcrição/genética , Regulador Transcricional ERG , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Eur Urol Oncol ; 5(4): 430-439, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33812851

RESUMO

BACKGROUND: Despite biomarker development advances, early detection of aggressive prostate cancer (PCa) remains challenging. We previously developed a clinical-grade urine test (Michigan Prostate Score [MiPS]) for individualized aggressive PCa risk prediction. MiPS combines serum prostate-specific antigen (PSA), the TMPRSS2:ERG (T2:ERG) gene fusion, and PCA3 lncRNA in whole urine after digital rectal examination (DRE). OBJECTIVE: To improve on MiPS with a novel next-generation sequencing (NGS) multibiomarker urine assay for early detection of aggressive PCa. DESIGN, SETTING, AND PARTICIPANTS: Preclinical development and validation of a post-DRE urine RNA NGS assay (Urine Prostate Seq [UPSeq]) assessing 84 PCa transcriptomic biomarkers, including T2:ERG, PCA3, additional PCa fusions/isoforms, mRNAs, lncRNAs, and expressed mutations. Our UPSeq model was trained on 73 patients and validated on a held-out set of 36 patients representing the spectrum of disease (benign to grade group [GG] 5 PCa). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The area under the receiver operating characteristic curve (AUC) of UPSeq was compared with PSA, MiPS, and other existing models/biomarkers for predicting GG ≥3 PCa. RESULTS AND LIMITATIONS: UPSeq demonstrated high analytical accuracy and concordance with MiPS, and was able to detect expressed germline HOXB13 and somatic SPOP mutations. In an extreme design cohort (n = 109; benign/GG 1 vs GG ≥3 PCa, stratified to exclude GG 2 cancer in order to capture signal difference between extreme ends of disease), UPSeq showed differential expression for T2:ERG.T1E4 (1.2 vs 78.8 median normalized reads, p < 0.00001) and PCA3 (1024 vs 2521, p = 0.02), additional T2:ERG splice isoforms, and other candidate biomarkers. Using machine learning, we developed a 15-transcript model on the training set (n = 73) that outperformed serum PSA and sequencing-derived MiPS in predicting GG ≥3 PCa in the held-out validation set (n = 36; AUC 0.82 vs 0.69 and 0.69, respectively). CONCLUSIONS: These results support the potential utility of our novel urine-based RNA NGS assay to supplement PSA for improved early detection of aggressive PCa. PATIENT SUMMARY: We have developed a new urine-based test for the detection of aggressive prostate cancer, which promises improvement upon current biomarker tests.


Assuntos
Próstata , Neoplasias da Próstata , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/urina , Biomarcadores Tumorais , Detecção Precoce de Câncer , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Proteínas Nucleares/genética , Antígeno Prostático Específico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , RNA/urina , Proteínas Repressoras/genética
15.
Nat Cancer ; 2: 978-993, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34738088

RESUMO

Multi-tyrosine kinase inhibitors (MTKIs) have thus far had limited success in the treatment of castration-resistant prostate cancer (CRPC). Here, we report a phase I-cleared orally bioavailable MTKI, ESK981, with a novel autophagy inhibitory property that decreased tumor growth in diverse preclinical models of CRPC. The anti-tumor activity of ESK981 was maximized in immunocompetent tumor environments where it upregulated CXCL10 expression through the interferon gamma pathway and promoted functional T cell infiltration, which resulted in enhanced therapeutic response to immune checkpoint blockade. Mechanistically, we identify the lipid kinase PIKfyve as the direct target of ESK981. PIKfyve-knockdown recapitulated ESK981's anti-tumor activity and enhanced the therapeutic benefit of immune checkpoint blockade. Our study reveals that targeting PIKfyve via ESK981 turns tumors from cold into hot through inhibition of autophagy, which may prime the tumor immune microenvironment in advanced prostate cancer patients and be an effective treatment strategy alone or in combination with immunotherapies.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias de Próstata Resistentes à Castração , Autofagia , Humanos , Imunoterapia/métodos , Masculino , Fosfatidilinositol 3-Quinases/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Microambiente Tumoral
16.
Clin Cancer Res ; 27(11): 3079-3093, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33753452

RESUMO

PURPOSE: Basal-like breast cancer (BLBC) is a particularly aggressive intrinsic molecular subtype of breast cancer that lacks targeted therapies. There is also no clinically useful test to risk stratify patients with BLBC. We hypothesized that a transcriptome-based phenotypic characterization of BLBC tumors and their microenvironments may overcome these challenges. EXPERIMENTAL DESIGN: We conducted a retrospective correlative genomic sequencing study using a matched pairs design with validation in five independent cohorts. The study was conducted on a large population-based prospective cohort of the major molecular subtypes of breast cancer conducted in the greater Seattle-Puget Sound metropolitan area. Cases consisted of women 20-69 years of age first diagnosed with invasive breast cancer identified through the population-based Surveillance Epidemiology and End Results program. Patients for this analysis (n = 949) were identified from the 1,408 patients with stage I-III triple-negative breast cancer [estrogen receptor-negative (ER-), progesterone receptor-negative (PR-), HER2-]. Of the 949 women, 248 developed a recurrence after their initial diagnosis. A matched set of 67 recurrent and nonrecurrent BLBC tumors was subjected to transcriptome sequencing. Through RNA sequencing of the matched sets of recurrent and nonrecurrent BLBC tumors, we aimed to identify prognostic phenotypes.To identify nonredundant and uncorrelated prognostic genes, we used an ensemble of variable selection algorithms, which resulted in a ranking of genes on the basis of their expected utility in classification. Using leave-one-out cross-validation, we trained a random forest classifier on the basis of the top 21 genes (BRAVO-DX). Validations were performed in five independent triple-negative or BLBC cohorts, and biomarker robustness and transferability were demonstrated by employing real-time PCR. RESULTS: We found that cancer cell intrinsic and immunologic phenotypes are independent predictors of recurrence. By simultaneously interrogating the tumor and its microenvironment, we developed a compound risk model that stratified patients into low-, medium-, and high-risk groups, with a 14%/56%/74% chance of recurrence, respectively. Biologically, the primary tumors of patients who developed a recurrence had increased growth factor signaling and stem-like features, while nonrecurrent tumors showed high lymphocyte infiltration with clonal expansion of T and B cells, as well as antitumor polarization of macrophages. We validated our model in five independent cohorts, including three large cohorts, where BRAVO-DX was highly informative in identifying patients with disease recurrence [HR, 6.79 (95% confidence interval (CI), 1.89-24.37); HR, 3.45 (95% CI, 2.41-4.93); and HR, 1.69 (95% CI, 1.17-2.46)]. A smaller gene set focused on the tumor immunophenotype, BRAVO-IMMUNE, was highly prognostic in all five cohorts. CONCLUSIONS: Together, these results indicate that phenotypic characteristics of BLBCs and their microenvironment are associated with recurrence-free survival and demonstrate the utility of intrinsic and extrinsic phenotypes as independent prognostic biomarkers in BLBC. Pending further evaluation and validation, our prognostic model has the potential to inform clinical decision-making for patients with BLBC as it identifies those at high risk of rapidly progressing on standard chemotherapy, as well as those who may benefit from alternative first-line therapies.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Fenótipo , Transcriptoma/genética , Adulto , Idoso , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/patologia , Feminino , Glicosídeos , Humanos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Pregnanos , Prognóstico , Estudos Prospectivos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Washington/epidemiologia , Sequenciamento Completo do Genoma
17.
Commun Med (Lond) ; 1: 24, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35602214

RESUMO

Background: SARS-CoV-2 is a highly contagious virus that causes the disease COVID-19. We have recently reported that androgens regulate the expression of SARS-CoV-2 host entry factors ACE2 and TMPRSS2, and androgen receptor (AR) in lung epithelial cells. We also demonstrated that the transcriptional repression of the AR enhanceosome inhibited SARS-CoV-2 infection in vitro. Methods: To better understand the various sites of SARS-CoV-2 infection, and presence of host entry factors, we extensively characterized the tissue distribution and localization of SARS-CoV-2 virus, viral replication, and host entry factors in various anatomical sites sampled via autopsy. We applied RNA in-situ-hybridization (RNA-ISH), immunohistochemistry (IHC) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) approaches. We also assessed histopathological changes in SARS-CoV-2 infected tissues. Results: We detect SARS-CoV-2 virus and viral replication in pulmonary tissues by RNA-ISH and IHC and a variety of non-pulmonary tissues including kidney, heart, liver, spleen, thyroid, lymph node, prostate, uterus, and colon by qRT-PCR. We observe heterogeneity in viral load and viral cytopathic effects among various organ systems, between individuals and within the same patient. In a patient with a history of kidney transplant and under immunosuppressant therapy, we observe an unusually high viral load in lung tissue by RNA-ISH, IHC and qRT-PCR. SARS-CoV-2 virus is also detected in this patent's kidney, liver and uterus. We find ACE2, TMPRSS2 and AR expression to overlap with the infection sites. Conclusions: This study portrays the impact of dispersed SARS-CoV-2 infection in diverse organ systems, thereby facilitating avenues for systematic therapeutic approaches.

18.
Proc Natl Acad Sci U S A ; 118(1): e2021450118, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33310900

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, employs two key host proteins to gain entry and replicate within cells, angiotensin-converting enzyme 2 (ACE2) and the cell surface transmembrane protease serine 2 (TMPRSS2). TMPRSS2 was first characterized as an androgen-regulated gene in the prostate. Supporting a role for sex hormones, males relative to females are disproportionately affected by COVID-19 in terms of mortality and morbidity. Several studies, including one employing a large epidemiological cohort, suggested that blocking androgen signaling is protective against COVID-19. Here, we demonstrate that androgens regulate the expression of ACE2, TMPRSS2, and androgen receptor (AR) in subsets of lung epithelial cells. AR levels are markedly elevated in males relative to females greater than 70 y of age. In males greater than 70 y old, smoking was associated with elevated levels of AR and ACE2 in lung epithelial cells. Transcriptional repression of the AR enhanceosome with AR or bromodomain and extraterminal domain (BET) antagonists inhibited SARS-CoV-2 infection in vitro. Taken together, these studies support further investigation of transcriptional inhibition of critical host factors in the treatment or prevention of COVID-19.

19.
Mol Cell ; 79(6): 978-990.e5, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32857953

RESUMO

Processing bodies (PBs) and stress granules (SGs) are prominent examples of subcellular, membraneless compartments that are observed under physiological and stress conditions, respectively. We observe that the trimeric PB protein DCP1A rapidly (within ∼10 s) phase-separates in mammalian cells during hyperosmotic stress and dissolves upon isosmotic rescue (over ∼100 s) with minimal effect on cell viability even after multiple cycles of osmotic perturbation. Strikingly, this rapid intracellular hyperosmotic phase separation (HOPS) correlates with the degree of cell volume compression, distinct from SG assembly, and is exhibited broadly by homo-multimeric (valency ≥ 2) proteins across several cell types. Notably, HOPS sequesters pre-mRNA cleavage factor components from actively transcribing genomic loci, providing a mechanism for hyperosmolarity-induced global impairment of transcription termination. Our data suggest that the multimeric proteome rapidly responds to changes in hydration and molecular crowding, revealing an unexpected mode of globally programmed phase separation and sequestration.


Assuntos
Endorribonucleases/genética , Precursores de RNA/genética , Estresse Fisiológico/genética , Transativadores/genética , Terminação da Transcrição Genética , Animais , Tamanho Celular , Sobrevivência Celular/genética , Humanos , Pressão Osmótica/fisiologia , Proteoma/genética
20.
Neoplasia ; 22(2): 111-119, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31931431

RESUMO

Androgen receptor (AR) antagonists, such as enzalutamide, have had a major impact on the treatment of metastatic castration-resistant prostate cancer (CRPC). However, even with the advent of AR antagonist therapies, patients continue to develop resistance, and new strategies to combat continued AR signalling are needed. Here, we develop AR degraders using PROteolysis TArgeting Chimeric (PROTAC) technology in order to determine whether depletion of AR protein can overcome mechanisms of resistance commonly associated with current AR-targeting therapies. ARD-61 is the most potent of the AR degraders and effectively induces on-target AR degradation with a mechanism consistent with the PROTAC design. Compared to clinically-approved AR antagonists, administration of ARD-61 in vitro and in vivo results in more potent anti-proliferative, pro-apoptotic effects and attenuation of downstream AR target gene expression in prostate cancer cells. Importantly, we demonstrate that ARD-61 functions in enzalutamide-resistant model systems, characterized by diverse proposed mechanisms of resistance that include AR amplification/overexpression, AR mutation, and expression of AR splice variants, such as AR-V7. While AR degraders are unable to bind and degrade AR-V7, they continue to inhibit tumor cell growth in models overexpressing AR-V7. To further explore this, we developed several isogenic prostate cell line models in which AR-V7 is highly expressed, which also failed to influence the cell inhibitory effects of AR degraders, suggesting that AR-V7 is not a functional resistance mechanism for AR antagonism. These data provide compelling evidence that full-length AR remains a prominent oncogenic driver of prostate cancers which have developed resistance to AR antagonists and highlight the clinical potential of AR degraders for treatment of CRPC.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Androgênios/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/efeitos dos fármacos , Androgênios/metabolismo , Animais , Benzamidas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...